
International Journal of Theoretical Physics, Vol. 33, No. 9, 1994 
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From a quantum collective approach, the momentum relaxation time, through 
both electron-el~tron and electron-ion interactions, is obtained based on 
electron wave functions interacting with the continuum oscillations (plasma 
waves). The theoretical model presented gives a consistent and complete set of 
transport eocffafients for a dense magnetized plasma. This unified scheme of 
long- and shoat-range interactions gives conductivity formulas which are free 
from the ~ Debye length, which loses its physical meaning as an upper 
impact paxamcter for relatively high-density, coupled plasma. 

1. INTRODUCTION 

We present a theoretical analysis on transport coefficients of coupled, 
fully ionized, classical and magnetized plasmas. 

Transport  phenomena, where understanding has been attempted via 
the model of  discrete interacting particles, i.e., where electrons are elasti- 
cally deflected at the surface of  the Fermi sphere by the ionic density 
fluctuations, do not give rigorous account of  an essential characteristic 
property of  such a medium: excitation of  collective oscillations. For  that, 
collective behavior effects are, simply, treated through Coulomb collisions 
and separated as long- and short-range interactions and arbitrary split in 
the integration process. 

A number of  investigators (Marshak, 1941; Hubbard, 1966) developed 
transport theories for stellar interiors, using an ordinary two-body Boltz- 
mann equation for e lectron-ion scattering with Born approximation for 
the unshielded Coulomb potential. In order to eliminate the long-range 
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Coulomb potential divergence, the Coulomb potential has been cut off at 
the mean interionic distance. These models assumed static shielding. 

Moreover, the Boltzmann equation commonly used in connection with 
transport theories is expressed in terms of the distribution function 
f(r ,  v, t). The point of view is either classical or semiclassical since it 
assumed that the position (r) and the velocity (v) (momentum of the 
particles) can be defined simultaneously. If quantum effects are important 
in the many-particle system, which is the case in dense plasmas, it is 
necessary to introduce for the relaxation process another variable as 
suggested first by Wigner (Rozsnyai, 1972). The variable could either be 
the energy E or equivalently ho~. 

2. RELAXATION TIME FROM COLLECTIVE MODES 

The plasma under consideration is a continuum of volume f2 contain- 
ing N electrons and N / Z  ions, and the electron density is n = N / ~ .  The 
system exhibits 3N (high-frequency branch) and 3 N / Z  (low-frequency 
branch) characteristic frequencies cos(q) of longitudinal oscillations 
(s =e ,  i). 

The high-frequency branch corresponds to the electron plasma oscilla- 
tions and the low-frequency branch to the ion sound waves. 

The motion of electrons in a coupled plasma is affected by the 
continuum oscillations (many-body interactions). When such oscillations 
are excited, each individual particle suffers a small perturbation of its 
velocity and position, arising from the combined potential of all the other 
particles. 

The plasma oscillations are quasiparticles, plasmons, and ion sound 
waves which obey Bose-Einstein statistics and their distribution function is 

.,Vq = {exp[h~os(q)/kaT ] - -  1} -1, S = e, i (1) 

The electron (as a wave) interacting with the whole plasma can emit and 
absorb the quasiparticles with energy hcos(q) and momentum hq (Pines, 
1956), such that the perturbed distribution function is relaxed in the 
process. The oscillation frequencies are assumed to obey the dispersion 
relations (Klimontovich and Silin, 1960) of a classical plasma. 

The kinetic equation for the distribution function f of electrons will 
satisfy the equality 

where the RHS is the collision term for both electron-electron (e-e)  and 
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electron-ion (e - i )  interactions and defines a relaxation time r such that 

Of I ~e Ofl = f~l (3) 
O t  c o .  ,, c 

In a first-order perturbation f l  can be put in the form 

A = ~ Ofo/OE (4) 

fo is the Fermi-Dirac distribution function and �9 is an arbitrary trial 
function of the energy E of the electron which will be defined shortly. 

The interaction integral is taken to be the collision term of the Bloch 
transport equation (Haug, 1972) 

-~ = 8~2m, n, kB T q2 ~q{fo(k , )[ l_fo(k)]  e., co,(q) 

x 6(E" - E + hco,) +fo(k)[  1 -fo(k')]6(E" - E - hco,) } 

~D(k') 7 d3k , • 1  (k)J (5) 

IUAq)l 2 is the square of  the Fourier transform of U~(r), which is a shielded 
Yukawa potential. 

Moreover, the electron energy E is related to the wave vector k by 
E = h2k2/2m, assuming the Fermi surfaces are spherical. 

The relaxation time % for both interactions is taken to be Zc x = ~ z~ 1 
(s = e, i) and used in the usual definition of  the current density and heat 
flux density to yield the transport coefficients. 

From equations (2) and (4) we have 

"r,, (E) = O(Ofo/OE) /(Of/O t) I., (6) 

The unknown function ~ = e[ElvxC(E ) can be evaluated by assuming that 
the fields are in the x direction, i.e., E = (4, 0, 0) and vx is the electron speed 
component which is parallel to E. 

Since C(E) is still an unknown function to be defined, for that cI) will 
be used as a trial function through a Kohler variational principle (Haug, 
1972) thereby evaluating the numerator of equation (6). 

To evaluate the integral of  equation (5), the following assumptions are 
made: (e) hco, ,~ E (classical plasma), (fl) Ik'l = Ikl (elastic scattering), (y) the 
scattering is isotropic. 

Furthermore, to obtain an analytical expression for the relaxation time 
To(E), the integral in equation (5) is evaluated in accordance with the mean 
value theorem for integrals. Since U,(q) is bounded in the interval (0, 0,), 
it is taken at the mean value of the two limits. The maximum vector ~ is 
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. ]/3 for each of  the e - e  and e - i  extrapolated to large wave numbers q ,~ ,,~.~ 
interactions. 

Accordingly, equation (6) becomes 

(5x/~/3)m 1:2E3/2 
%(E) = 4 ^ ' ^ " 8zme [R~(~) + R~(~)] 

(7) 

where 

A A a t J 2 u  

Rs(es) = 1 - - ~ e s + 4  . . .  ~= 1 (2v + 4)(2v)! q- ' s = e, i (8) 

B2~ are the Bernoulli numbers, ~s=hco~(~,)/kBT, Z~ = - 1 ,  and Z i = Z .  
Here e and m are the electron charge and mass, respectively. 

3. T R A N S P O R T  COEFFICIENTS OF A MAGNETIZED PLASMA 

3.1. The Field Term 

The LHS of equation (2) for a magnetized plasma can be written as 

e (v ^ B) Of 1 afoleE 
+ . . . . . .  ~ ~ (9) 

m c ~v % 

where At is the chemical potential, VT the temperature gradient, and B the 
magnetic field. 

The function ~ can formally be expressed as 

with 

(I) = TcV 1 + z2F2~' [ A + % ( ~ c  ^ A) + ~21~([~c "A)] (10) 

E - #  OAt) 
A =  - T ~ " V T - e E  

and [~c = eB/mc is the electron gyrofrequency. 
Writing E = E.L + E L and VT = VT• + VTIt, the perpendicular and the 

parallel components of  the electric and temperature fields, respectively, and 
assuming a cubic symmetry in the plasma, we obtain an expression for the 
perturbation of  the distribution function f l  [equation (4)] from equation 
(10) in (9): 



Traraport Coefficients of Magnetized Plasma 1835 

f l  = - z d p (  - e E  OfolOE + 'r OfolOT) " v + z~q~( -eEl_ OfoldE 

+ VT• OfolOT)" (v ^ 1"1<) - z3cp[-e(Ell �9 f~c) OfoldE 

+ (f~c" VTII) OfolOT](l)c .v) ( l l )  

= + *~ f~ ) .  where ~p 1/(1 2 2 
In the longitudinal direction all fields and currents are parallel and 

II~ ^ A = 0 and hence the transport coefficients of  parallel components will 
be independent of the magnetic field, so that equation (10) is simply 

= %v-A.  The magnetic field has no effect on the spherical energy 
surfaces. 

For the transverse direction we have f~c " A = 0 ,  and equation ( l l )  
becomes 

f l  = - z d p (  - e E •  ~folOE + VT• afol~T) "v + z2~p( - eE•  OfolOE 

+VT• OfolOT)" (v ^ f~c) (12) 

3.2. Transport Coefficients 

In the Boltzmann theory the electrical current and energy fluxes are 
given, respectively, by 

f d3 p J = - e  2 -~-3- vfl (v) (13) 

r d3p my 2 
Q~= J 2  ~-g 2 vfl(v) (14) 

The heat current will then be given by (Spitzer and Harm, 1953; Braginskii, 
1958) 

Q = Qe + (#/T - O#/OT)Tj/e (15) 

By substituting fi  from (12) into (13) - (15)  we obtain 

E_L = j/a• + S• VT + R•  ^ j + N• A VT (16) 

Q • 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7  (17) 

This represents a complete set of transport coefficients in arbitrary mag- 
netic fields. 

The transport coefficients are now defined from equations (16) and 
(17) in terms of  integrals involving the electron relaxation time established 
from the collective approach. 

These are as follows. 
Electrical conductivity: 

tr• = e 2/('Ol [ 1 + f12 (K02/Kol )2] (18) 



1836 

Here 

Bennaceur and Khalfaoui 

Thermoelectric power: 

2 Sx  = ( p / T -  Ol~/OT)/e - ( eK l l /Ta•  x (1 + ~Ko2K12 /KuKo l )  (19) 

Hall  effect: 

R•  = - (e /mc)(Ko2/Kol ~ • ) (20) 

Nernst coefficient: 

N•  = - (e2/mc)(K12/Tcr• 1 - Ko2Kll/Kol K12) (21) 

Ettinghausen coefficient: 

N• T = - (e 2/mc)(K12/a• 1 - Ko2KI i/Kom K12 ) (22) 

Thermal conductivity: 

2 2 2• = (K21/T) x (1 + ~cKIz/K21K01) - (e2K21/Ta • 

•  + Qc4 Ko 22 K12/KlI2 2 go 12 ) (23) 

L e d u c -  Righi coefficient: 

L•  = ( - e/mcT)[K22 - (e2K12 KH/t~ • 1 -- Ko2 KIX/K12 Kol) 

2 (1 + ~cKoEK1E/K.Ko~) - KIzKu/Kol]  (24) 

(25) 
Kij = 2 - ~  c,.~,3 ] \  OE 1 

For classical plasmas (nondegenerate electrons), fo (E)  is taken to be 
the Maxwell distribution function in the evaluation of  the coefficients K o. 

3.3. Weak Magnetic Field ( ~ c f c )  2 ~ 1 

The coefficients defined above become 

a • ~- 8ne 2A T ( k  B T) 3/2/(n l/2m) = 2ne 2fc/m (26) 

S L ~-- -- 5kB/2e (27) 

R• ~ -- 315n/512nec (28) 

N• ~ --2205nl/2A~kB(kBT)3/2/64mc = - -2205nka~ /256mc  (29) 

N• T--~ -- 7.315~ I/2A~(k~ T)  5/2/64mc 

= - 7.315~z(kB T ) ~ / 2 5 6 m c  (30) 

2• ~- 32nA~ kB (ka T)  s/2/(~ 1/2m) = 8nka (kB T ) ~  /m (31) 
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2.L ~ 4 56 7 5neA 2 kn ( kB T )  4 = 4 56 7 5rc,,~kB ( kB T ) f  ~ 

- 32m2c 512m2c 

where 
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(32) 

A~ = (5x/~/3)rn 1/2/{87me4[Re(~ + Ri (e~)] } (33) 

The transport coefficients (26)-(31) are independent of the magnetic 
field. 

3.4. Strong Magnetic Field (f~,~)2 >> 1 

In this new limit the coefficients (18)-(24) become 

a• " 3~ l/2ne2A~ (ks  T)  3/2/4m = 3~ne2~c/16m (34) 

S L "~ - -kB/e  (35) 

R•  ~ - 1/nec (36) 

N• " -2kB/r~l /2mcf l~A~(kBT)  3/2 = - -8kB~/nrnc~2?~  (37) 

N i  T = 2/r~ l /2mct~A~(kB T)  l/2 = - 2 -2 - 8k  B Tfe/rzmcf~/r c (38) 

2j_ ~ 8nkB(kB T)  - l/:/(3n ~/2mf~2A~) 

= (nk~ T/m)f~(32/3nf~2f2)  (39) 

L L _ _ 5 n e k 2 T / 2 m : c f ~  ( 2 2 -2 2-2 " = - 5 n e k a T / 2 m  c ) ( z c / f l : ~ )  (40) 

The mean relaxation time f~ is obtained through 

~ - ~ 2(d3p/h3)z~(E)f~ - - ~  A~(kBT)  3/2 (41) 
--' f 2(d3p/h3) f~ x/z~ 

where z~(E) is given by equation (7). 
For arbitrary magnetic field strength the coefficients K o [equation (25)] 

can be evaluated numerically. 

4. CONCLUDING REMARKS 

The main contribution of the present work is a demonstration that 
collective modes of a relatively dense plasma can be used as  an interacting 
system where the electron (as a wave) can emit and absorb longitudinal 
plasma waves (similar to the interaction of electrons with phonons in liquid 
metals). 
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Table I. 
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Ratio of Electrical Conduetivities from the Present Model (pr) and from Lee and 
More (LM) a 

aj.p~/~r• M for given values of n (era -3) 

T (~ 1018 102o 1022 10 ~ 1026 

105 1.123 0.725 0.358 Dog Deg 
106 1.697 1.281 0.926 0.615 Deg 
10 7 2.137 1.703 1.302 0.993 0.899 

n , , i i i , i  

aGood agreement is found for a wide range of temperatures and densities. Deg, degeneracy of 
the electrons. 

Table II. Ratio of Thermal Conductivities from the Present Quantum Model (pr) and from 
Lee and More (LM) from a Classical Kinetic Approach a 

/~..!_pr/~,• for given values of n (era -3) 

T (~ 10 18 102 0 10 22 10 24 10 26 

105 2.415 1.559 0.769 Deg Deg 
106 3.650 2.754 1.992 1.324 Deg 
107 4.596 3.663 2.800 2.136 1.934 

I I  I I I III  I I~]EII I I  I ] I I  I I 

"Deg, degeneracy of the electrons. 

The results obtained are comparable in both magnitude and behavior 
to those obtained in classical kinetic calculations ($pitzer and Harm, 1953). 
The electrical conductivity [equation (26)] recovers the (kaT) 3/2 behavior 
as widely observed in the experiments. 

For  the magnetized plasma and for a strong ~ t i e  field strength, 
Tables I and II represent a comparison of  the present electrical O'.Lpr 

[equation (34)] and thermal 2• [equation (39)] conductivities with those 
obtained by (Lee and More, 1984), trLLM and 2• respectively. 

The ratios a•177 and 2J, pr/2_LLM are of  the same order of  magni- 
tude over a wide range of  temperatures and densities. 

Moreover, the ratio 2j./tr• T [equations (26) and (31)] (the Wiede- 
m a n n - F r a n z  law) is recovered for a Lorentz gas, since this ratio represents 
precisely the ideal Lorentz number 4(kB/e) 2. 
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